首页> 外文OA文献 >Discontinuous Galerkin finite element differential calculus and applications to numerical solutions of linear and nonlinear partial differential equations
【2h】

Discontinuous Galerkin finite element differential calculus and applications to numerical solutions of linear and nonlinear partial differential equations

机译:不连续Galerkin有限元微积分和   线性和非线性部分数值解的应用   微分方程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper develops a discontinuous Galerkin (DG) finite element differentialcalculus theory for approximating weak derivatives of Sobolev functions andpiecewise Sobolev functions. By introducing numerical one-sided derivatives asbuilding blocks, various first and second order numericaloperators such as thegradient, divergence, Hessian, and Laplacian operator are defined, and theircorresponding calculus rules are established. Among the calculus rules areproduct and chain rules, integration by parts formulas and the divergencetheorem. Approximation properties and the relationship between the proposed DGfinite element numerical derivatives and some well-known finite differencenumerical derivative formulas on Cartesian grids are also established.Efficient implementation of the DG finite element numerical differentialoperators is also proposed. Besides independent interest in numericaldifferentiation, the primary motivation and goal of developing the DG finiteelement differential calculus is to solve partial differential equations. It isshown that several existing finite element, finite difference and DG methodscan be rewritten compactly using the proposed DG finite element differentialcalculus framework. Moreover, new DG methods for linear and nonlinear PDEs arealso obtained from the framework.
机译:本文提出了一种不连续的Galerkin(DG)有限元微积分理论,用于逼近Sobolev函数和分段Sobolev函数的弱导数。通过引入数值单边导数作为构造块,定义了各种一阶和二阶数值算子,例如梯度,散度,Hessian和Laplacian算子,并建立了它们相应的演算规则。演算规则包括乘积和链规则,零件公式的积分和散度定理。还建立了拟议的DG有限元数值导数与一些著名的笛卡尔网格上有限差分数值导数公式的逼近性质以及它们之间的关系,并提出了DG有限元数值微分算子的有效实现。除了对数值微分的独立兴趣外,开发DG有限元微积分的主要动机和目标是求解偏微分方程。结果表明,使用提出的DG有限元微积分框架可以紧凑地重写现有的几种有限元,有限差分和DG方法。此外,还从该框架中获得了线性和非线性PDE的新DG方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号